EPSRC logo

Details of Grant 

EPSRC Reference: EP/I036990/1
Title: Cylindrical Levy Processes and Their Applications
Principal Investigator: Riedle, Professor M
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Department: Mathematics
Organisation: Kings College London
Scheme: First Grant - Revised 2009
Starts: 01 September 2012 Ends: 31 August 2014 Value (£): 100,568
EPSRC Research Topic Classifications:
Mathematical Analysis Numerical Analysis
EPSRC Industrial Sector Classifications:
No relevance to Underpinning Sectors
Related Grants:
Panel History:
Panel DatePanel NameOutcome
24 May 2011 Mathematics Prioritisation Panel Meeting May 2011 Announced
Summary on Grant Application Form
Stochastic differential equations model a process evolving in time and subject to a random noise. Numerous phenomena in nature and economics are modelled by these equations. The reason for the random noise might be found in external or internal fluctuations which do not allow a deterministic description, in random events in the future or in uncertainty of the model. The complexity of the model, e.g. the numbers of parameters involved or the state space of the modelled process, often results in the necessity to consider stochastic differential equations in infinite dimensional spaces. However, up to now, most of these models are restricted to a continuous Gaussian noise and to infinite dimensional spaces with a very rich structure due to the lack of a satisfactory mathematical theory.The first objective of this project is to develop a theory which enables us to treat stochastic differential equations in infinite dimensional spaces of a general type. The random source might have discontinuous paths and is allowed to be of a very general form, such that the randomness not only depends on the evolution in time but also on the underlying space. In the second part of this project, the usability of the theory is verified by studying two concrete examples out of the numerous applications: one model describes the physical distribution of the heat in a given region subject to some external random noise, and the second model originates from financial mathematics and describes the evolution of interest rate curves.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: