EPSRC logo

Details of Grant 

EPSRC Reference: EP/I029605/1
Title: 3D Assessment of Surface Integrity and Performance
Principal Investigator: withers, Professor P
Other Investigators:
Thompson, Professor GE
Researcher Co-Investigators:
Project Partners:
Alstom Group E.On
Department: Materials
Organisation: University of Manchester, The
Scheme: Standard Research
Starts: 01 August 2011 Ends: 31 October 2014 Value (£): 452,147
EPSRC Research Topic Classifications:
Eng. Dynamics & Tribology Materials Characterisation
EPSRC Industrial Sector Classifications:
No relevance to Underpinning Sectors
Related Grants:
Panel History:
Panel DatePanel NameOutcome
02 Feb 2011 EPSRC-NPL Announced
Summary on Grant Application Form
In many cases failure mechanisms initiate and propagate from the surface, including failure under corrosion, fatigue and wear. Critical to this is the surface finish (SF) and the surface integrity (SI). While surface finish has received much attention, surface integrity, a term used to describe the localised sub-surface region that differs from the bulk (residual stresses, plastic deformation, chemical changes, hardness, etc) has received much less attention. Traditionally people have used simple cross sections to examine the surface microstructure.In this project we will apply a suite of state-of-the-art methods to characterise as fully as possible the local microstructure in 3D across a range of scales. These include serial sectioning using a focused ion beam (FIB), mechanical sectioning and X-ray tomography. In the latter X-rays are used to obtain a 3D picture without mechanically sectioning the sample. Critical to the former methods are the means of removing material quickly and efficiently without introducing damage. Emerging methods to remove the damaged layer will be developed such that we can obtain EBSD, texture, chemical mapping, residual stress and insights into plastic deformation near-surface. This will lead to one of the best surface integrity assessment facilities in the world to support industry. In addition we will develop micromechanical methods to assess mechanical properties and corrosion and wear performance. In this way we will relate surface integrity to surface durability. This is critical if we are to predict and engineer surface performance. In addition to developing these metrology tools we will apply them to a set of industrial case studies including corrosion of stainless steel for the energy sector, the performance of thermal barrier coatings for the turbine engine sector, the wear performances of WC-Co coatings and nanostructured coatings. Further case studies will be identified by our industrial steering group.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.man.ac.uk