EPSRC Reference: |
EP/I008519/1 |
Title: |
REAL TIME AND IN-SITU HOLISTIC STUDY OF ENGINE TRIBOFILM FORMATION KINETICS |
Principal Investigator: |
Morina, Professor A |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Mechanical Engineering |
Organisation: |
University of Leeds |
Scheme: |
First Grant - Revised 2009 |
Starts: |
01 February 2011 |
Ends: |
29 February 2012 |
Value (£): |
100,792
|
EPSRC Research Topic Classifications: |
Eng. Dynamics & Tribology |
Surfaces & Interfaces |
|
EPSRC Industrial Sector Classifications: |
Manufacturing |
Transport Systems and Vehicles |
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
22 Jul 2010
|
Materials, Mechanical and Medical Engineering
|
Announced
|
|
Summary on Grant Application Form |
The current level of understanding of boundary/mixed lubricated tribological systems offers little predictive ability. Therefore, a detailed understanding of interface phenomena, especially of tribofilms' formation and removal kinetics, and their effect on friction and wear will significantly improve the process of designing new lubricants and coatings for ensuring increased fuel economy and high durability in internal combustion engines. Having the ability to characterise the tribofilm chemical composition in-contact will inevitably facilitate the studies on tribofilm formation and removal kinetics, far beyond what can be achieved currently.The proposed research project will use the X-ray absorption technique based on the latest development of the synchrotron source and the well established RAMAN spectroscopy to develop methodologies for in-situ and real time lubricated surface chemical characterisation in non-vacuum conditions. The equipment developed will be used for tribochemistry study in an engine relevant tribology system (cam/follower).While the friction of lubricated surfaces of the elastohydrodynamic interface is relatively well understood, the understanding of energy dissipation within the boundary layer regime, or at the solid-solid interface is less well understood. The project will be focused primarily in methodology and technique development for in-contact (within the rubbing contact), in-situ (within the tribotest) and in-lubro (uncleaned samples removed from the tribotest) analysis of tribochemistry processes which will be then applied to study the interface phenomena occurring in the Diamond like Carbon (DLC) coated cam/follower system when lubricated with organic friction modifier containing engine oils. The two main deliverables from this work are the development of protocols for tribology tests with in-contact and in-situ surface analysis and development of protocols for high resolution chemical in-lubro surface analysis using X-ray absorption spectroscopy. This work will enable development of a new approach for studying the tribochemistry processes occurring in sliding and rolling/sliding IC engine tribology contacts.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.leeds.ac.uk |