EPSRC Reference: |
EP/H028064/2 |
Title: |
Statistical design of interactions between proteins that are both novel and specific |
Principal Investigator: |
Colwell, Dr LJ |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Chemistry |
Organisation: |
University of Cambridge |
Scheme: |
Postdoc Research Fellowship |
Starts: |
01 October 2012 |
Ends: |
28 February 2014 |
Value (£): |
135,123
|
EPSRC Research Topic Classifications: |
|
EPSRC Industrial Sector Classifications: |
Pharmaceuticals and Biotechnology |
|
|
Related Grants: |
|
Panel History: |
|
Summary on Grant Application Form |
The ability of proteins to associate with each other in specific interactions is crucial to the functioning of vast multitudes of biological processes. In the crowded molecular soup that makes up the intracellular environment, a single protein will encounter many other proteins with which they could potentially interact. The interactions that help cells reproduce and survive may range from fleeting connections to the formation of long lasting complexes; however it is the specificity of these interactions that allows the exquisite levels of regulation observed in so many biological systems. I will focus on how proteins evolve specific interactions, and how we can elucidate interaction partners from the vast amounts of genomic data currently being generated. Each and every cell is packed with proteins, the interactions between these proteins form the foundation of almost all cellular processes. I am interested in the ways that proteins fit together to form complexes, and the constraints that complex formation imposes on the evolution of the sequences of interaction partners. If one amino acid on the surface of protein A changes shape, in order for protein B to bind to protein A an amino acid on the surface of B may also have to change - this is an example of a compensatory mutation. I will develop statistical and mathematical analyses that extract correlations between different residues of a protein of interest from alignments of orthologous and paralogous proteins. Detecting compensatory mutations in sequence data provides information about protein structure and function, and the specificity of protein-protein interactions. The specificity of binding interactions is crucial to the proper functioning of cellular processes, and determining the evolutionary rules that govern the specificity of protein interactions will inform the rational design of novel specific interactions between proteins. Our ability to understand and thus engineer the molecular determinants of specificity is vital to efforts to design and engineer effective drugs and other bio-molecules. There are numerous potential applications across a range of different industries, for example synthetic biology approaches to energy production, and the development of biomimetic materials.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.cam.ac.uk |