EPSRC Reference: |
EP/H024581/1 |
Title: |
Bio-inspired Technologies |
Principal Investigator: |
Toumazou, Professor C |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Institute of Biomedical Engineering |
Organisation: |
Imperial College London |
Scheme: |
Standard Research |
Starts: |
01 November 2009 |
Ends: |
31 December 2010 |
Value (£): |
201,480
|
EPSRC Research Topic Classifications: |
Electronic Devices & Subsys. |
System on Chip |
Vision & Senses - ICT appl. |
|
|
EPSRC Industrial Sector Classifications: |
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
11 Sep 2009
|
Cross-Disciplinary Feasibility Account
|
Announced
|
|
Summary on Grant Application Form |
The research activities of the Bionics group at the Institute of Biomedical Engineering, Imperial College London have concentrated on providing intelligent, physiological semiconductor chips based on models of the biological behaviour of the retina, cochlea, neurons, beta-cells, etc. The current research focus at IBE is in the area of bio-inspired technologies, which is a cross-disciplinary field at the interface between biology/biochemistry, physics/engineering and medicine. We design electronic systems that interact with human organs and systems, as well as: electronic circuits and devices designed following the basic principles of biological systems. Here we propose a set of feasibility studies which are based on applying state of the art engineering technologies to provide solutions for intricate physiological and medical problems, such as selective neural stimulators or implants. Equally, we are deriving new technologies based on complex biological systems and biochemical processes, such as cell signalling mechanisms. This investment will lead to research which will provide proof of principle for several exciting new ideas; and if successful will be developed commercially and have a significant impact on healthcare as well as certain widespread devices such as mobile phone cameras, or sensitive chemical detector arrays. The Feasibility Account will be used for a suite of five research themes. The first theme will explore the feasibility of converting the phototransduction process in an invertebrate's photoreceptor - a cascade of biological amplifiers - into electronic equivalents. The second theme ventures into a completely new research field of memristors - passive memory devices. The other three themes assess new strategic paths in neural stimulation and neural prosthesis design: combined optical and electrical stimulation for achieving selectivity, then use of a photosynthetic reaction centre for imparting light sensitivity of neurons and muscles, and eventually the use of noise to enhance sensory perception in human auditory pathways.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.imperial.ac.uk |