EPSRC Reference: |
EP/H009736/1 |
Title: |
A chiral theory of DNA supercoiling |
Principal Investigator: |
van der Heijden, Professor G |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Civil Environmental and Geomatic Eng |
Organisation: |
UCL |
Scheme: |
Standard Research |
Starts: |
01 October 2009 |
Ends: |
30 September 2012 |
Value (£): |
365,386
|
EPSRC Research Topic Classifications: |
Chemical Biology |
Condensed Matter Physics |
Physical Organic Chemistry |
|
|
EPSRC Industrial Sector Classifications: |
No relevance to Underpinning Sectors |
|
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
01 Jul 2009
|
Physical Sciences Panel - Physics
|
Announced
|
|
Summary on Grant Application Form |
We propose to bring together three threads of recent progress to develop anew chiral theory of DNA supercoiling. The three threads are i) theelectrostatic theory of interacting helical charge distributions, ii) themechanical theory of elastic braids, and iii) a new efficient approach toderive equilibrium equations for geometric variational problems. The newtheory will for the first time introduce explicitly chiral interactions intothe description of supercoiling, and will uncover the effects driven by theseinteractions. Specifically, we will build a theory to describe foursupercoiling situations: (i) spontaneous formation of free-ended braids,(ii) conformations of braided DNA in single-molecule manipulation experiments,and formation of writhes in (iii) torsionally stressed and (iv) initiallyrelaxed looped DNA, triggered by changing environment.In recent years systematic experimental studies of the torque response ofplectonemically supercoiled and braided DNA have been performed, while moreare anticipated. These require a quantitative theory that better accountsfor the complex DNA-DNA interactions. We will develop that theory. The mainpart of this project is theoretical, but the predictions of the theory willbe tested against new experiments that will be performed in collaborationwith the named Project Partners.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
|