EPSRC Reference: |
EP/F028865/1 |
Title: |
Novel Multi-relaxation-time High-order Models for Lattice Boltzmann Simulation of Non-equilibrium Gas Flows |
Principal Investigator: |
Zhang, Professor Y |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Mechanical and Aerospace Engineering |
Organisation: |
University of Strathclyde |
Scheme: |
First Grant Scheme |
Starts: |
07 July 2008 |
Ends: |
06 July 2011 |
Value (£): |
250,467
|
EPSRC Research Topic Classifications: |
Fluid Dynamics |
Multiphase Flow |
|
EPSRC Industrial Sector Classifications: |
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
22 Nov 2007
|
Engineering Science (Flow) Panel
|
Announced
|
|
Summary on Grant Application Form |
The micro/nano-fluidic technology associated with Micro/Nano-Electro-Mechanical Systems and Micro-Total-Analysis Systems is set to revolutionise the chemical, pharmaceutical and food industries. Flow simulation is critical in the design of these miniaturised devices, but there is a major problem when predicting gas flow behaviour at micro/nano-scales. The thermodynamic quasi-equilibrium hypothesis, on which the Navier-Stokes-Fourier (NSF) equations depend, is violated when the mean free path of the gas molecules is comparable to the characteristic dimension of the devices. While standard continuum NSF equations become invalid, molecular dynamics methods for whole flow-field simulation are beyond current computational capabilities. We propose a mesoscopic lattice Boltzmann (LB) method to fill this gap between continuum and molecular approaches, aiming to produce quantitatively accurate results for non-equilibrium gas flows but at a fraction of the computational cost of molecular dynamics methods. In addition to developing high-order mesoscopic LB models for both isothermal and thermal non-equilibrium flows, we will propose multiple relaxation time schemes to address different relaxation rates for different order velocity moments (including momentum and energy). For thermal flow, instead of seeking large discrete velocity sets to retain up to 5th-order velocity terms in the Hermite expansion approximation to the equilibrium distribution function, an additional energy density distribution function will be introduced so that small discrete velocity sets with simple lattice structures can significantly improve computational efficiency. For the first time, we will develop high-order LB models with multiple relaxation time schemes that will be applicable not only to hydrodynamic flow but also highly non-equilibrium flows. The results of this research will deliver a fundamental advance in mesoscopic LB modelling capability beyond the NSF equations and lay down a firm basis for a practical simulation tool for gas flows especially in industrially-relevant micro/nano-fluidic system geometries.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.strath.ac.uk |