EPSRC logo

Details of Grant 

EPSRC Reference: EP/E03103X/1
Title: Polymeric vesicles with topologically controlled functionalities
Principal Investigator: Battaglia, Professor G
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Department: Materials Science and Engineering
Organisation: University of Sheffield
Scheme: First Grant Scheme
Starts: 01 August 2007 Ends: 31 January 2010 Value (£): 208,705
EPSRC Research Topic Classifications:
Biological membranes Complex fluids & soft solids
EPSRC Industrial Sector Classifications:
No relevance to Underpinning Sectors
Related Grants:
Panel History:  
Summary on Grant Application Form
We present here an example of nature-inspired 'bottom-up' design that can offer outstanding advantages for engineering structures at a molecular level based on the same long/studied principles of biological structures. We use synthetic materials know as copolymers that have allowed us the design of very robust structures with sizes of hundreds of nanometers (1000 times smaller than human hair). The simplest among these structures formed by copolymers is the vesicle. This is spherical aggregate made of a water core surrounded by a semi-permeable membrane. These nano-spheres have already been used for encapsulating drugs and other molecules. These are then delivered to specific parts of the body so as to minimize drug side-effects. Here we want to expand further the molecular level control by studying the possibility of generating vesicles with patched surfaces. These patches will allow the localization of specific functionalities. Particularly, we present two different immediate applications: vesicles with controlled porosity and self-motile vesicles. In the former, the patches will allow the controlled degradation and formation of stable pores into the vesicles membranes. In the latter, we will generate vesicles with an asymmetric distribution of functional groups. These will subsequently used for attaching molecular motors. This will be the first attempt for designing self-propelled nano-particles.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.shef.ac.uk