EPSRC Reference: |
EP/E017452/1 |
Title: |
SMART AIRCRAFT MORPHING TECHNOLOGIES (SMORPH) |
Principal Investigator: |
Cooper, Professor J |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Mechanical Aerospace and Civil Eng |
Organisation: |
University of Manchester, The |
Scheme: |
Standard Research |
Starts: |
01 October 2006 |
Ends: |
31 March 2010 |
Value (£): |
144,865
|
EPSRC Research Topic Classifications: |
Aerodynamics |
Intelligent Measurement Sys. |
Materials testing & eng. |
|
|
EPSRC Industrial Sector Classifications: |
Aerospace, Defence and Marine |
|
|
Related Grants: |
|
Panel History: |
|
Summary on Grant Application Form |
Advances in smart structures and active materials during the last decade are likely to yield significant advances in aircraft design though the controlled change of wing shape, often referred to as wing morphing. The concept of a morphing wing is not a new one; wing morphing has been used in most aircraft to a limited extent over the last century. As an example, one can look at the flap system that exists on most aircraft. This morphing technology enables a wing, that is designed for cruising, to increase its camber, thereby improving its performance for landing and take-off. This technology revolutionized the industry, making air travel safer, cheaper and more convenient. As we move further into the 21st century, the materials now available provide a greater latitude in the design of morphing aircraft. It is now possible to not only consider take-off, landing and cruise conditions, but also loiter, climb, turn and dash conditions, to name a few. More fuel efficient flight and control surface free roll control will also be possible through the use of morphing technologies. This S3T Eurocores proposal consists of three interrelated projects that will investigate and evaluate critical vehicle and technology issues related to morphing aircraft. Overall performance requirements will be developed for several innovative actuation systems and morphing concepts. A number of modelling methodologies will be developed to provide a better predictive capability for morphing aircraft, along with advancing morphing design and optimisation techniques. All of the individual novel concepts and methodologies will be validated using wind tunnel models. Finally, a remotely piloted vehicle that is already been developed and flight tested in the framework of a EU collaboration between the CRP partners will be used for proof-of-concept analysis and flight testing of the proposed morphing strategies.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.man.ac.uk |