EPSRC Reference: |
EP/D062942/1 |
Title: |
On the Development of Theory-Informed Operationalised Definitions of Demand Patterns |
Principal Investigator: |
Syntetos, Professor A |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Man and Man Sciences Res Institute |
Organisation: |
University of Salford |
Scheme: |
First Grant Scheme |
Starts: |
01 October 2006 |
Ends: |
30 September 2008 |
Value (£): |
165,723
|
EPSRC Research Topic Classifications: |
Manufact. Enterprise Ops& Mgmt |
Mathematical Aspects of OR |
|
EPSRC Industrial Sector Classifications: |
|
Related Grants: |
|
Panel History: |
|
Summary on Grant Application Form |
Different Stock Keeping Units (SKUs) are associated with different demand patterns, which in turn require different methods for forecasting and stock control. Consequently, we need to categorise the various SKUs and apply the most appropriate methods for each particular category. The way we are going to perform this task has obviously tremendous implications in terms of stock and customer satisfaction and, as such, the relevant rules constitute a vital element of every inventory management system. To deal with this problem people tend to classify, rather arbitrarily, the demand patterns (using rules that, based on experience, work well) and then select the forecasting and stock control methods that perform best in each category. Nevertheless, the choice of the most appropriate forecasting and inventory control methods is the very purpose of conducting any categorisation exercise. Therefore, it is more logical to first compare alternative estimation procedures and stock control models for the purpose of identifying their regions of superior performance and then, based on the results, categorise the demand patterns, rather than working the other way around. A procedure like this one is obviously expected to offer better results. In research conducted with John Boylan and John Croston we developed a theoretically coherent categorisation scheme, along the lines discussed above, for forecasting purposes only. However, stock control issues were not addressed and this is what I would like to do in this proposed research. This research area has attracted very limited academic attention over the years. A reason for that may well be the considerable associated complexity. That is, forecasting and stock control have to be viewed as interrelated functions (as they are in practice) rather than stand-alone modules of a wider solution, and this obviously increases the theoretical complexity of the problem. Although some early work has been done on the interaction between forecasting and stock control, a theoretically coherent approach is still required and this is the first proposal to provide it.The main objective of this research is to produce theoretically sound demand categorisation rules for both forecasting and stock control purposes. To conduct such a project, the input from industry practitioners is very important. In this regard, two companies have been selected as project partners. This collaboration will also ensure that the empirical data required for the purposes of this research becomes available. My philosophical stand-point is positivistic in the sense that universally applicable categorisation solutions are sought to be developed. However, due to the complexity of the problem, the research strategy employed cannot be purely deductive. An iterative procedure between theory and data is to be introduced and such an approach will ensure that all important factors are identified.In summary, the proposed research deals with an issue that is worth investigating from both a theoretical and practitioner perspective. Very little work has been conducted in the area of demand categorisation and, from the research to date, it is not clear how managers should classify demand patterns for forecasting and stock control purposes. The importance of this issue has been reported on numerous occasions, and what is agreed upon in the relevant literature is the immediate need to further advance knowledge in this area and empirically assess the relevant issues. The proposed research therefore constitutes a very timely project. The results of such a project will find application in all forecasting and stock control software package manufacturers. Indeed, there is also a natural application to any industrial setting where an in-house developed or bought-in demand classification computerised solution is in place to facilitate inventory management.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
http://www.business.salford.ac.uk/research/ommss/projects/Forecasting/ |
Further Information: |
|
Organisation Website: |
http://www.salford.ac.uk |