EPSRC logo

Details of Grant 

EPSRC Reference: EP/D055881/1
Title: Ultrasonic arrays for ultrahigh resolution real time biomedical imaging
Principal Investigator: Button, Professor TW
Other Investigators:
Su, Professor B
Researcher Co-Investigators:
Project Partners:
Department: IRC in Materials Processing
Organisation: University of Birmingham
Scheme: Standard Research (Pre-FEC)
Starts: 01 November 2006 Ends: 30 April 2010 Value (£): 336,061
EPSRC Research Topic Classifications:
Materials Characterisation Materials Processing
Medical science & disease
EPSRC Industrial Sector Classifications:
Electronics Healthcare
Related Grants:
EP/D058961/2 EP/D059739/1
Panel History:  
Summary on Grant Application Form
The project involves collaborative, multidisciplinary work combining materials research, device design, and medically-oriented testing to create ultrasonic arrays capable of ultrahigh resolution biomedical imaging in real time. Real-time ultrasonic imaging is a safe, inexpensive and convenient technique which accounts for approximately 20% of all hospital imaging examinations. However, spatial resolution is ultimately limited by maximum frequency and existing ultrahigh resolution systems are based on mechanically-scanned single-element transducers. Such systems demonstrate the need for increased resolution but at the same time limit progress because they cannot be used in real time. For this, ultrasonic arrays are needed which can operate at frequencies higher than the present maximum of ~30 MHz. However, it has so far been impossible to produce such arrays.Piezocomposite materials, comprising ceramic pillars in a polymer matrix, are now state-of-the-art in commercial ultrasonic imaging systems, with higher electromechanical coupling, better acoustic impedance matching to biological tissue, and better electrical properties than piezoceramics alone, leading in turn to wider intrinsic bandwidth and higher sensitivity. In addition, reduced lateral coupling means that multi-element arrays can be defined from monolithic piezocomposite plates. However, difficulties manufacturing material with micron-scale dimensions has blocked adoption in high frequency ultrasonic transducers and arrays. In the research programme being proposed, ultrasonic arrays will be created to operate for the first time at frequencies potentially as high as 100 MHz, suitable for ultrahigh resolution imaging in real time. The key to this advance will be the ultrafine scale piezocomposites we will produce with optimised net shape ceramic processing technology, in combination with state-of-the-art composite design. This will be a major step forward in enabling real time biomedical ultrasonic imaging at presently impossible frequencies, ultimately allowing new understanding and better diagnosis of a range of medical conditions in areas such as dermatology, ophthalmology, small parts cancers, dentistry, and the cardiovascular system, sometimes in intralumenal configurations.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.bham.ac.uk