EPSRC logo

Details of Grant 

EPSRC Reference: EP/L015285/1
Title: EPSRC Centre for Doctoral Training in Complex Particulate Products and Processes
Principal Investigator: Roberts, Professor KJ
Other Investigators:
Muller, Professor F
Researcher Co-Investigators:
Project Partners:
Department: Chemical and Process Engineering
Organisation: University of Leeds
Scheme: Centre for Doctoral Training
Starts: 01 May 2014 Ends: 30 September 2023 Value (£): 3,668,888
EPSRC Research Topic Classifications:
Design of Process systems Manufact. Enterprise Ops& Mgmt
Particle Technology
EPSRC Industrial Sector Classifications:
Manufacturing Chemicals
Food and Drink Pharmaceuticals and Biotechnology
Related Grants:
Panel History:
Panel DatePanel NameOutcome
23 Oct 2013 EPSRC CDT 2013 Interviews Panel B Announced
Summary on Grant Application Form
Most chemical products are designed to have an effect, for example nutritional, hygiene, medical, disease and pest control, colouration, flavour, and preservation. Formulations are used to enhance and/or stabilise these desired effects and deliver the benefit at the point of use. The majority of formulated products in the Food, Home & Personal Care, Healthcare, Pharmaceutical, Agrochemicals, Fine Chemical, Catalysts, Coatings and Specialty Chemical sectors are Complex Particulate Products that contain solid or liquid particles (or droplets). Evidence for this is found in the breadth of companies supporting this CDT bid across these key economic sectors.



The proposed CDT will train scientists and engineers capable of leading research teams for the development of new complex particulate products and the associated intensified processes (efficient, lean and agile) for their manufacture. The TSB high-value manufacturing strategy highlights the UK's need to apply 'leading-edge technical knowledge' to the 'creation of products' to underpin a technology-led economy where 'innovation in manufacturing' is a central theme. This demands a step-change in the current engineering skill-base, notably through promotion of more effective integration of research between scientists, engineers and product designers.



Particle science and engineering underpins a wide-range of manufacturing sectors in the UK and across this space, there is a strong requirement for engineers and physical scientists who can iteratively translate novel materials discoveries through the design and development of scalable manufacturing processes, into innovative high-quality products (following for example a 6-sigma strategy). The shortage of highly trained researchers to support novel and sustainable manufacturing approaches in this area is a current risk for major UK based manufacturing companies as well as SMEs.



Current academic training is largely analytical and focuses on materials discovery (new molecules, new materials), or on product formulation issues (physical/chemical stability, product effect), or on manufacturing and processing (scale up, unit operation, design and development of chemical and biochemical processes). There is generally little integration from materials to products with all the various processing stages needed, across the research, development and manufacturing supply chain. The efficient delivery of novel high-quality complex formulated products into the market requires a shared understanding of the challenges and limitations between researchers and practitioners working at all aspects of the product design and manufacture. This CDT will challenge the current culture of more tightly focussed research by providing comprehensive training for all students across the relevant domain space with a stroing focus on teamwork at all stages including during the PhD research phase. For the students the Centre will provide a unique training environment, combining innovative industry relevant training with world-class research supervision in a problem-led educational environment. Ultimately the combination of skills provided by the Centre will contribute strongly to the development of new research leaders in this field for both industry and academia.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.leeds.ac.uk