EPSRC Reference: |
EP/G012172/1 |
Title: |
Programme Grant Application in Bio Tribology of Articular Cartilage and Substitution Interventions |
Principal Investigator: |
Fisher, Professor J |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Mechanical Engineering |
Organisation: |
University of Leeds |
Scheme: |
Standard Research |
Starts: |
05 May 2009 |
Ends: |
04 June 2015 |
Value (£): |
4,536,888
|
EPSRC Research Topic Classifications: |
Biomechanics & Rehabilitation |
Medical science & disease |
Tissue Engineering |
|
|
EPSRC Industrial Sector Classifications: |
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
08 Aug 2008
|
Bio Tribology Interview Panel
|
Deferred
|
18 Sep 2008
|
Programme Grant Prioritisation Panel (Eng)
|
Announced
|
|
Summary on Grant Application Form |
Osteoarthritis affects at least 15% of the population. Currently, apart from pharmacological intervention and pain relief the only effective treatment is end stage total joint replacement. Current total joint replacement surgery is highly successful in patients over 65 with relatively low demands, with success rates over 90% at ten years. Osteoarthritis is being diagnosed in increasing numbers of younger and more active patients, who have expectations of an active life style and desire to remain functional and working for extended periods. However, current joint replacement is not as successful in younger patients, with long term wear and osteolysis in the hip and knee, associated with loss of fixation/bone, loosening and higher revision rates. Revision of failed prostheses is currently a large operating burden in the NHS, and these operations are generally more expensive with increased morbidity compared to primary arthroplasty. There is a reluctance to utilise end stage joint replacement in younger and more active patients, and there is a desire to develop tissue sparing substitution treatments and regenerative treatments for early degenerative disease in articulating joints. There is a need to develop research capacity in the functional biotribology of articular cartilage to support research and development of cartilage substitution therapies and regenerative interventions and enable a new generation of pre-clinical studies to be undertaken to accelerate of the translation of new technology to the patient and enhance the safety and efficacy through better short term predictions of long term clinical outcomes.The overall aim of this programme is to develop a new research platform to study the biotribology of full scale, whole natural joints, over extended periods of time, under representative physiological and anatomical conditions (through in vitro experimental and computational models). Once established these novel simulation systems for cartilage biotribology will allow us to work collaboratively with academic and industrial groups to investigate and support development of new surgical interventions for cartilage substitution and regenerative therapies for early intervention in osteoarthritis. Three important natural articulating joint systems of the hip, the knee and the spine will be addressed. The findings from the programme grant will be valuable in helping industry and manufacturers of advanced medical products to develop improved and safer intervention therapies, and for surgeons to make better informed about decisions on use of new therapies. The work will also inform regulatory and standard bodies such as MHRA (UK), FDA (USA) and ISO. This will have tremendous economic benefit to the UK NHS as well as social benefit to the patients.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
http://imbe.leeds.ac.uk |
Further Information: |
|
Organisation Website: |
http://www.leeds.ac.uk |